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The supersonic flight of a slender projectile in a fluid which may undergo internal 
non-equilibrium transformations is examined by a systematic perturbation 
scheme. In  the frozen limit, the classical results of Whitham and his celebrated 
‘rule’ are recovered. Unlike the classical theory, however, the shape of the nose 
shock can be expressed explicitly in terms of known functions when the relaxation 
decay length becomes of the same order as a characteristic length scale. The 
theoretically predicted shock angle, expressed as a function of the radial distance, 
is found to be in excellent agreement with the experimental measurements of 
Wegener and Klikoff. 

1. Introduction 
Theoretical and experimental investigation of the decay of weak conical shock 

waves in a non-equilibrium flow was described in an earlier paper (Wegener, Chu 
& Klikoff 1965). Though adequate for interpreting the experimental results, the 
theory developed there is deficient in many respects. While it accounted satis- 
factorily for both the dispersion and geometrical effects on the decay of conical 
shocks, it ignored entirely the nonlinear effects. In  particular, the theory failed to 
give an expression for the variation of the shock angle 6 with the radial distance r .  

The purpose of the present study is to remedy this deficiency. A perturbation 
theory is formulated which allows one to predict the shock shape to any degree of 
accuracy. The theory, calculated to the second order of the semi-vertex angle of 
the projectile, recovers in the limiting case of a frozen flow Whitham’s (1952) 
theory of a supersonic projectile. In  general, the shock shape cannot be expressed 
explicitly in terms of known functions; it is given implicitly in parametric form 
as in classical theory. However, in the important special case where the relaxa- 
tion decay length K - ~  (defined by (3.25) below) is of the order of a characteristic 
length of the projectile, the nose shock assumes the simple form 

2 = A, T - &mk2&-1{erf ( k r )  i}2, (1.1) 
where A, = (MFo- 1)4, M,, being the frozen Mach number, E is effectively the 
semi-vertex angle and k is a dimensionless parameter defined by (4.9). The extra- 
ordinary simplicity of this expression is a consequence of and reflection on the 
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physical fact that only Mach waves near the very tip of the projectile overtake the 
nose shock, attenuating it to a vanishing weak discontinuity in a few relaxation 
decay lengths. It is also for this reason that e is the only geometrical parameter 
which enters into the formula. The shock angles computed from the above equa- 
tion are found to be in excellent agreement with the experimental results of 
Wegener and Klikoff. 

2. Description of the problem 
The basic equations governing the motion of a steady axisymmetric non- 

equilibrium supersonic flow over a projectile are we11 known. Neglecting the 
various transport effects and assuming only one non-equilibrium mode, they may 
be written in the form 

Here, x is the distance along the axis of the symmetry measured from the tip of 
the projectile in the direction of the oncoming flow, and r the radial distance from 
the axis; u and v denote respectively the velocity components along the x and r 
axis; p,p,  h, q and are respectively the pressure, density, specific enthalpy, a 
variable characterizing the progress of the non-equilibrium process and the 
reaction rate (describing the rate of change of the progress variable q) ;  

Si = Q(P> P, 4)  

h, = a{h(P,p, q)}/ag., h, = ah/ap, hp = W a P  

a; = (aP/aP)s, ,  = - h,/(h, - 1/P) ,  

is a known function of p, p and q. Finally, 

and the frozen sound speed uf is given by 

(2.2) 

(cf. Vincenti & Kruger 1965). When the frozen Mach number &If = [(d+v2)/u;J& 
is greater than one, the system (2.1) possesses three families of real characteris- 
tics: the outgoing and incoming Mach waves, and the streamlines. In  terms of 
u, v and af ,  an out,going Mach wave has a slope determined by 

where h = cot (0 +pf), 0 = tan-l (vlu) being flow angle and pJ being the frozen 
Mach angle. 

In  studying the shape of the nose shock, it is essential (see e.g. Chu 1970) to  
introduce a new co-ordinate system (a,P) defined as follows: a is constant along 



Decay of weak shock waves in non-equilibrium JEow 357 

an outgoing Mach line such that if this line intersects the surface of the projectile 
at a point x = x*, the line will be labelled as a = x*; p is simply r. It follows that 
in the region of the flow field affected by the projectile motion x = x(a,p)  and 
r = p. The transformation relationships between (x, r )  on the one hand and (a, p) 
on the other can be deduced immediately fromdx = xada + x,& where subscripts 
a and p signify partial differentiation with respect to a and j3 respectively. For 
example, aapx = l /xa,  = -xl/xa, etc. In  terms of a andp, (2.1) and (2.3) 
become 

(pu)a-h(pv)a  +xu(pv)b = -Pvxa/P, (U--v)qu+vqgxa = @a, 

p ( ( ~ - h v ) u a  +vujjxa} = -pa> p((u-hv)va +vvpxa:a) = hpa-plxu, 

( ‘ / ~ ~ ) { ( ~ - ~ ~ ) ~ a + ~ ~ ~ ~ u : a ) - { ( ~ - h ~ I P a + l J P B X a }  = Chq/hp)&a,x/ = A* 

(2.4a-f) I 
Let the projectile be described by the equation r = eR(x) where E may be taken 

as the slope drldx of the projectile at x = 0. We shall be concerned here with 
slender and smooth projectiles. That is, E is assumed small and R ( x )  is a dif- 
ferentiable function for x > 0. Generalization to cases where dr/dx may have jump 
discontinuities along the projectile presents no basic difficulties. 

The requirement that the flow should be tangentral to the projectile implies 
that v/u+ BR’(x) as r + eR(x). In  the a, p plane, we have 

v/u+eR’(a) as P-+eR(a), 
x = a at p = eR(a). 

(2 .5a ,  b )  

The last condition follows directly from the particular way in which the charac- 
teristics are labelled. In addition to these boundary conditions, the usual jump 
conditions must be satisfied at each point on the nose shock. Thus, if 6 is the 
shock angle and subscript 0 denotes the free-stream condition, which is assumed 
to be in thermodynamic equilibrium, we have 

(2.6) v = (u,-u)cot6, = i p(u - v cot 6) = pouo, h + $UZ = h, + $u$, 

P-Po = P o ~ o ( ~ o - ~ ) ,  

representing respectively the continuity equation, the energy equation, the 
continuity of q, and the momentum balance in the normal and tangential direc- 
tions. The position of the nose shock is, of course, not known a priori. It must 
assume a form so that dx/dr = cot 6 at every point on the nose shock. In  the 
a,P plane, the system of boundary conditions (2.6) must be applied along the 
shock locus a = a(P, e) determined by integrating 

xada/d/3+x8 = cot&, or daldp = (cot6-xg)/xu, (2.7) 

subject to the initial condition a = 0 at  p = 0. 
Obviously the problem is a very complicated one. Nevertheless, as will be seen, 

a systematic calculation of the nose shock can be carried out to any degree of 
accuracy for the case of a slender body. 
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3. Solution 
3.1. Perturbation equations 

Let +(a,&?) be a dependent variable which appears in the system of equations 
(2.4). We assume that it can be expressed as 

+(a, B> = +,(a, P )  + @ 1 ( 4  P) + E 2 1 1 r 2 ( 4  PI + .- * * (3.1) 

Obviously + = 9, for E = 0 so that +, is the value of $ for a uniform stream. In 
particular, p,,  p,, qo and uo are respectively the free-stream pressure, density, 
progress variable and velocity; moreover vo = 0. Writing the dependent variables 
of the system (2,4) in the form (3.1) and collecting terms of like order in B ,  we 
obtain a set of equations governing terms of zeroth-, first-, second-, ... order 
variables. For example, (2 .4f)  gives 

xog = A,, x u  = A, = , . * * ,  (3.2a, b )  

13.3) i where ho = (M;,- 1)4 = cot,ufo, af = afo+eal+ ..., 

a l -  - (3) a p ,  p l + ( ~ ) , ~ l - t - ( ~ ) , q l .  

Likewise, ( 2 . 4 ~ )  to (2.4e) give 

etc. where 

and q* = q*(p, p)  is the equilibrium value of the progress variable q at a pressure p 
and density p. 

In a similar manner, the boundary condition (2.5) can be decomposed into 
a set of conditions, according to different powers of E, with the help of Taylor's 
expansion. For example, (2.5 b) gives 

Q1 = Q,, (ql-qT), 8 = (@*PP)OPI + (%*/aP)oP1, (3.5) 

} ( 3 . 6 a , b , c )  
x,(a, 0) = a, q ( a ,  0) + %p@, 0) ma) = 0, 

x2(a, 0) +Zlb(", O)R(a) ++xopg(a, 0)R(a)2 = 0, ... * 
However, care should be exercised in applying the same procedure to ( 2 . 5 ~ )  for 
it is well known and easily demonstrable that v - 1/r or 1/P as P'+O so that 
v(a,  /3) does not possess a Taylor expansion at  /? = 0. The difficulty can be circum- 
vented by writing v = V(a,P)/P where V(a,P)  has a Taylor expansion at p = 0. 
In  this way one deduces from ( 2 . 5 ~ )  that 

lim & = 0, ( 3 . 7 ~ )  b )  
P + O  8 - 0  

lim (PvZ + R(a)d(Pv,)/d/3) = u,R(a)R'(a), . .. . 

3.2. Conditions at the nose shock 

Substituting expressions like (3.1) into the jump conditions (2.6) and collecting 
terms of  like power in E ,  we obtain a set of boundary conditions at the shock wave. 
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The first-order boundary conditions are 

P o ( ~ l - ~ 1 C O ~ ~ o ~ + P 1 ~ O  = 07 ~ p o l ) l + ~ , O P l + ~ * O ~ l + ~ O ~ l  = 0, 
q1 = 0,  p1+p0uou1 = 0, v1+u1c0t6, = 0. 

Unlike (?.6), this is a homogeneous system inpl,pl, ul, v1 and ql. If these are not 
simultaneously zero at the shock, the determinant of the system must vanish. 
It follows that cot So = (MFo - I )& = ho or So = pfo, the free-stream frozen Mach 
angle. Moreover, 

P1 = a;oPl = -PoUoU1 = (Pouo/~o)v1, q1 = 0 

~o(u2- v2 cot so) + ~ 2 u o  = - P O  W o 4 ~ 1  +Pouo(%o/%)V!/aFn, 

hPOP2 + hpOP2 + hqoq, + uou2 = - *(M;O/wl 

q 2  = 0, p)2+pouou~ = 0,  v,+u,cot60 = -M;o6,vl/h0, 

(3.9) 

at the shock. Likewise, collecting terms of e2, one obtains 

(3.10) 1 x (1 +P%$Oth,, + (2 /aV&-,p + (l/a;)hpp)ol, 

where subscript 0 appended to a bracket signifies that all quantities in the 
bracket are evaluated at  the undisturbed state of the oncoming free stream. In 
deriving (3.10) use has been made of (3.9) in simplifying the first-order terms. 
Now the homogeneous part of (3.10) and (3.8) are the same; in particular, their 
determinants are zero when an = ,uf. To ensure the system that (3.10) is consistent, 
its non-homogenous terms must be related appropriately. This relationship may 
be easily obtained by eliminating the second-order quantities from the system 
(3.10). Thus, 

4 = $ ( A  + 1) (Jf&/hh/uo,  (3.11) 

where (3.12) 

For an ideal gas, h = (y / (y  - l))p/p and a3 = yp/p so that A is just y. Since 

cot 6 = cot (J0 + + . . .) and cot 6, = cot,ufo = A,, 

cot8 = A O - ~ : M ~ O ~ ~ + O ( E ~ )  = ho-$(A+ l )€(M~o/h~)~l /u l+O(€~) .  (3.13) 

3.3. Zeroth- and first-order solutions 

The zeroth- and first-order solutions can be written down by inspection. Thus, it 
is obvious from ( 3 . 2 ~ )  and (3.6,) that 

xo = A0P+a. (3.14) 

On the other hand, the system of equations (3.4), (3.7) and (3.9) contains no 
inhomogeneous terms so that 

p1 = 0, p1 = 0, q1 = 0,  u1 = 0, v1 = 0. (3.15) 

The only first-order quantity that is non-zero is xl(a,P) which, according to 
(3.2b) and (3.66), is given by 

z1 = -hoR(a). (3.16) 
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3.4. Second-order solution 

In view of (3.15), the second-order quantities, p2,p2, q2, u2, v2 and x2, satisfy the 
same set of differential equations as p, ,  p,, ql, ul, v, and xl. Likewise, the second- 
order boundary conditions at the shock are given by (3.9) with subscript 1 
replaced by 2. Similarly, (3.11) and (3.13) become 

M4 v 
8, = %(A + 1) M’o - - v2 cot8 = Ao-$(A + 1 ) c 2 L o  A+ ..., (3.17a,b) 

A; u,’ 4 uo 

which is now valid to the order of e2. 
On the other hand, the second-order boundary conditions at  the projectile are 

given by ( 3 . 6 ~ )  and (3.7b).  The solution of this boundary-value problem can be 
readily constructed by the method of Laplace transform if the jump conditions at 
the shock could be applied at a! = 0 instead of the shock wave itself. Of course, 
there is no a priori assurance that such a replacement is legitimate and yields a 
solution which is, at  most, different from the required solution to a higher order in 
e. While it is true that the shock wave degenerates into the frozen Mach wave 
a = 0 in the limit e+O, this feature alone is not sufficient to guarantee the 
validity of the replacement. At any rate the accuracy of such an approximation 
will have to be examined after the shock locus is computed (cf. $ 5 ) .  

Denoting the Laplace transform of a function &(a!, p)  by &(s, p)  or simply Q, i.e. 

(3.18) a = Srn &(a, b) e-asda!7 
0 

where S = 7 ~ R ( a ) ~  is the cross-sectional area of the projectile at  a, S‘ = d S / d a ,  and 
,!? is the Laplace transform of S’. In  the above solutions, KO and K,  are modified 
Bessel functions of order zero and one respectively, and 

where a, is the equilibrium sound speed and a,“ = - (hP + h&)/(l+, +hqq; - 1/p). 
To complete the second-order solution in the transform plane, we must com- 

pute z2(s, b). This is found to be governed by the equation 

(3.21) 
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and the boundary condition, x2(s,  0) = 0, where 

3.5.  Behaviour of solution for small a 
The behaviour of the second-order solution for small a can be deduced from the 
nature of their transform at large s. Now, for uoros B 1 ,  

for all values of v ,  where 

Consequently, for s $ l / u o ~ o  and l/h0P, 

K = (~M~~0/2h0) /u0r , .  

(3.23) 

(3.24) 

(3 .25)  

where (3.27) 

Substituting (2 .2)  into (3 .27) ,  it is easy to verify that the A defined here is the 
same as that introduced earlier in (3.12).  

The system of equations (3 .26)  may be readily inverted. Now the inverse 
Laplace transform of (s/4n)4B’ is 

(3.28) 

Consequently, for a/uorO and a/ho/3 < 1, 

where use is made of the boundary condition x2(a, 0) = 0. Evidently 1 / ~  is the 
attenuation or decay length due to non-equilibrium effects in the fluid. 
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4.1. Shock locus 4. Nose shock 

According to (2.7), the nose shock in the a, P plane is 

da/dP = (cot S - xB)/xa, 

where cot S is given by (3.17b). Since the nose shock degenerates into the Mach 
line a = O in the limit s+O, both a/uoro and a/hoP tend to zero as E + O  for a 
fixed 8. As will be seen in $5, these quantities are indeed uniformly small along 
the nose shock. Assuming this to be the case for the moment, it follows from 

Moreover since x = x0+€z1+€222+ ... 
= a + hob- sAoR(a) - e2J'(a)G(P), (4.3) 

where 

therefore 

(4.4) 

(4.5) 

which may be readily integrated to give the equation of the nose shock in the 
a, P plane 

$ E ~ P ( ~ ) ~ G ( / ~ )  = J:F(a) (1 -eh,R'(a))da. (4.6) 

The equation of the shock in the physical plane may be obtained by eliminating a 
from (4.6) and (4.3) and replacing /3 in these equations by r .  

4.2. Frozen limit 

In the limit T~ +a, we have K + 0 so that 

The equation of the nose shock in the a, /3 plane is then 

where k = ( A  + 1)Mj0/(2h$)a. 

The equation of the shock in the physical plane is, therefore, 

(4.10) 

z = a+hor-€hoR(a)-€2krgF(a), 
12 4 I r f a  

r = -  
k2s4 

which agrees with Whitham's classical formula to the lowest order of E. (Note that 
A = y in the case of an ideal gas and Whitham's y is our a - eA,R(a).) 
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4.3. The case where the relaxation decay length is of the 
order of a typical length of the projectile 

Let L be a typical length scale of the projectile. If the decay length K - ~  is of the 
same order as L - an important case in the theory of non-equilibrium flow - the 
equation of the nose shock can be simplified considerably. 

Let us first non-dimensionalize all length scales by L. Specifically let us intro- 
duce new variables: 3 , 5 ,  CZ, p,A,  s”, etc., denoting respectively xlL, rlL, a/L, PIL, 
R/L ,  S/L2, etc. Having recast all formulas in terms of these new variables, we 
shall discard the tildas so that x ,  r ,  a, p, R, S, etc. in this section will henceforth be 
understood as dimensionless. Equation (4.6), the equation of the nose shock in 
the a, /3 plane, will then assume the simple form 

where 

&2F(a)2g(/3) = /‘F(a) (1 -eh,R’(a))da, 
0 

(4.11) 

(4.12) 

Likewise, its equation in the physical plane is given by (4.11) and 

x = a+ho/3-€hoR(a)-€2F(a)g(/3). (4.13) 

We now assume that KL is of the order of unity. Obviously g ( B )  is bounded. 
Consequently the integral in (4.11) is a small quantity of the order of s2 for all 
p’s. This in turn implies that the dimensionless a is necessarily small. Now, for 
a 4  1, 

(4.14) 
2 SN( 0) 

F(a)(l -~AoR’(a))da 2 3-~*(1 -doR’(0)). 

If e is taken as the tangent of the semi-nose angle of the projectile, R‘(0) = 1. 
Moreover, since #(a) = n R ( c ~ ) ~  and R(0) = 0,  we also have S”(0) = 2n. Sub- 
stituting (4.13) and (4.14) into (4.11), we have 

a = 354g(/3)2+ O(@). (4.15) 

Substituting (4.15) into (4.13) and replacing /3 by T ,  we obtain the equation of the 
nose shock in the physical plane. 

x = 0 ,-a 48 4 m2* (4.16) 

Near the tip of the projectile, r < 1 and 

g(r) = krB(1- &Lr + O(r2)), (4.17) 

so that the shape of the nose shock near the tip of the projectile is 

x = (Ao- $k2s4)r + (ik2&%cL)r2. (4.18) 

Hence, (dx/dr)r=o = ho - $k2e4, (d2x/dr2),=, = KLk2E4, (4.19) 
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at r = 0. Denoting the shock angle at  the tip by ST, one has cot S, = A, - ik2e4, 
so that 

1 3 k%4 

1 +Ai  4 M;,. 
S, = c0t-l A, + $k2e4 - + ... = pro+- - (4.20) 

The shock angle at  the projectile is, therefore, independent of the relaxation time. 
It is indeed the shock angle for a frozen flow over the projectile (i.e. T,+co). 

Moreover, the expression is in accord with that which can be deduced from 
Taylor-Maccoll theory. The shock curvature at the projectile is, however, 
affected by non-equilibrium effects. The dimensional curvature there is given by 

or (4.21) 

Finally, for K L r  $ 1, the nose shock degenerates into the frozen Mach wave, 

X = hor - $T€4kz/KL. (4.22) 

5. Verification of the a priori hypotheses 
Two sets of hypotheses were introduced in constructing the second-order 

solutions: ( 1 )  that the required solution can be constructed by applying the jump 
conditions at a = 0 instead of the shock wave whose position is not known until 
the problem is solved; ( 2 )  that a/uorO < 1 and a/A,P < 1 along the shock wave. 

In the frozen limit where K+ 0 or Z L ~ T ~ + C O ,  the last hypothesis is known to be 
valid (Whitham 1952). If KL is of the order of unity, this can also be verified. For 
the nose shock is given by (4.15) and, in terms of dimensional a and P, it assumes 
the simple form 

Recalling that both erf ( K P ) ~  and (erf ( K P ) & / ( K P ) k )  are bounded for all P's,  we 
conclude immediately that a/uoTo < 1 and a/Ao/3 < 1, both being of the order of 
€4. 

The validity of the first hypothesis is demonstrated if we can show that the 
boundary conditions at  the shock wave, namely 

a = & 7 r ( k z c 4 / ~ )  (erf ( ~ / 3 ) 4 ) 2 .  (5.1) 

Pz = @OP2 = -Po@,oU2 = ( P o u o / h , ) v 2 ? q 2  = 0, (5.2) 
(cf. (3.9) and $ 3.4) are satisfied along the shock, at  least to a higher order of 6 ,  if not 
exactly. 

Since a / u , ~ ~  < 1 and a/TOP < 1 a t  the shock, (3.29) is applicable there. The 
first three relationships in (5.2) are obviously satisfied everywhere along the 
shock. The last one, i.e. qz = 0, is only satisfied approximately with an error of 
O(e6).  To see this, let us consider for simplicity the case where KL is of the order of 
unity. As in $4.3, we may simplify ( 3 . 2 9 ~ )  for q2 by observing that a/L  < 1. 
Proceeding as in $4.3, one finds 

(5.3) 
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where use has been made of the fact that S’(6) 
It follows that 

S”(0)C = 2n5 for a/L Q 1. 

365 

(5.4) 

Now a/uoro and a/h,P are both of O(e4) along the shock, therefore q, = O(E6). 
Consequently, the second-order solution constructed under the first hypothesis 
does indeed satisfy approximately all the boundary conditions at  the shock with 
an error of the order of eG. 

6. Comparison with experimental results of Wegener-Klikoff 
Some interesting experiments on the propagation of weak conical waves in a 

reactive mixture were reported in Wegener, Chu & Klikoff (1965). A supersonic 
projectile was fired between two metal strips on which a line of small holes was 
drilled parallel to  the flight path. As the projectile traverses the firing range at  
supersonic speeds, a strong bow shock is generated which sweeps across the line of 
holes at supersonic speeds producing a travelling pressure disturbance over the 
metal strips. The increased pressure behind the shock produces a succession of gas 
puffs through the holes which, in turn, generate weak conical shock waves on the 
far side of the metal strips. The decay of these weak conical shock waves was 
measured. The variation of the shock strength with radial distance is expressed in 
curves giving the shock angle as a function of r .  The model gas used in the experi- 
ments was a well understood reacting mixture 

N, + N2042 N, + 2NO,, 

(cf. Wegener 1961), with reactant mole fractions varying from 0 (i.e. pure 
nitrogen) to 0.15. Experiments conducted in pure nitrogen yield results which are 
indistinguishable from those obtained in air. These experimental results will now 
be compared with the theoretical formulas derived below. 

According to (4.16), the equation of the nose shock expressed in terms of 
dimensional r and x is 

x = h,r - g ~ ~ G ( r ) ~ ,  (6.2) 

where C(r )  = &r*k~il erf ( K r ) 9 .  (6.3) 

The shock angle S can then be computed from 

cot 6 = dx/dr 
= A, - 37&4k%3-K7 (erf ( K r ) * /  (KT)+. (6.4) 

Thus, 6 = ,uf + 37rie4k2M~2e-~~(erf ( ~ r ) * / ( ~ r ) + .  (6.5) 

6 = pf+ $n*e-Kr(erf (Kr)*/(Kr)*) (S(0) -,I+}. (6.6) 

In  terms of the shock angle 6(0) at r = 0, we have 

Shock angles computed from the above theoretical formula are compared with 
the experimentally determined shock angles in figure 1. The undisturbed 
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conditions of the medium for the various experiment points are given in table 1. 
It is seen that the agreement between the experimental and theoretical values 
is excellent. 

Experimental I o z0=3+32p sec,uar,=0-47 cm 
A 258psec,O.317 cm 

a - Analytical data computed from (6.6) 
3 

17 k3 
3 
0 ' 16 
& 

0 1 2 3 4 5 

r cm 

FIGURE 1. Comparison of theoretical and experimental shock wave attenuation 
(experimenbal data taken from Wegener, Chu & Klikoff 1965). 

Experi- 

number Fraotion (m/sec) M,, Meo (sec) (em) ( O K )  atm (degree) 
ment It, mole Uo 7 0  Uo70 To Po PfO 

146 0.054 1230 3.64 3.86 2.82 0.470 0.296 1.01 15-95 0.1245 
143 0,081 1230 3.70 3.96 2-58 0-317 0.297 1.00 15.68 0.1455 

TABLE 1. Test condition of experiments from Wegener, Chu & Klikoff (1965) 
~ ~~~ 

This research was sponsored by a grant from the National Science Foundation. 

Appendix 

not of the order of €3 but of &, that is, 
One should remark that the next term in the expansion for x(a,P),  cf. (4.3), is 

~ ( a ,  p)  = x0 + exl + € 2 ~ ~  + &x+ + 0(~3), 
where XB (a ,  p )  satisfies the differential equation = 0. The boundary condition 
for x+(a,p) is determined by the requirement that x = a at p = eR(a). Thus, we 
find 

Without the half power terms like x-&, the above boundary condition can never 
be satisfied, regardless how many more terms in the expansion is computed. To 
the order of e#, the nose shock in the a, p plane assumes the form 

F(a)  (1 -d0R' (a)  -&kR(a)4) da 
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instead of (4.6). Here, k is given by (4.9). Since k N M~&Q, the €5 term becomes 
more significant in cases where M,, is large. The improvement over the classical 
results of Whitham resulting from this term as well as terms of the order of €3 and 
t$ has recently been demonstrated by Chou in a calculation which will be reported 
later. 
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